Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

IL-33 induction and signaling are controlled by glutaredoxin-1 in mouse macrophages.

Identifieur interne : 000156 ( Main/Exploration ); précédent : 000155; suivant : 000157

IL-33 induction and signaling are controlled by glutaredoxin-1 in mouse macrophages.

Auteurs : Ellen O. Weinberg [États-Unis] ; Beatriz Ferran [États-Unis] ; Yuko Tsukahara [États-Unis] ; Michaela M S. Hatch [États-Unis] ; Jingyan Han [États-Unis] ; Colin E. Murdoch [États-Unis] ; Reiko Matsui [États-Unis]

Source :

RBID : pubmed:30682073

Descripteurs français

English descriptors

Abstract

Interleukin (IL)-33 is an interleukin-1 like cytokine that enhances Th2 responses and mediates mucosal immunity and allergic inflammation but the mechanism regulating endogenous IL-33 production are still under investigation. In macrophages, lipopolysaccharide (LPS) administration resulted in marked induction of IL-33 mRNA that was blunted in macrophages from glutaredoxin-1 (Glrx) knockout mice and in RAW264.7 macrophages with Glrx knockdown by siRNA. Glutaredoxin-1 is a small cytosolic thioltransferase that controls a reversible protein thiol modification, S-glutationylation (protein-GSH adducts), thereby regulating redox signaling. In this study, we examined the mechanism of Glrx regulation of endogenous IL-33 induction in macrophages. Glrx knockdown resulted in impaired de-glutathionylation of TRAF6, which is required for TRAF6 activation, and inhibited downstream IKKβ and NF-κB activation. Inhibitors of NF-κB suppressed IL-33 induction and chromatin IP sequencing data analysis confirmed that IL-33 is an NF-κB-responsive gene. Since TRAF6-NF-κB activation is also essential for IL-33 signaling through its receptor, ST2L, we next tested the involvement of Glrx in exogenous IL-33 responses in RAW264.7 cells. Recombinant IL-33 (rIL-33) administration induced IL-33 mRNA expression in RAW264.7 macrophages, and this was inhibited by Glrx knockdown. Interestingly, rIL-33-induced IL-33 protein was identified as the 20 kDa cleaved form whereas LPS-induced IL-33 protein was identified as full-length IL-33, which may be less active than the cleaved form. In a clinically-relevant mouse model of asthma, intra-tracheal cockroach antigen treatment induced Glrx protein in wild type mouse lungs but Glrx induction was attenuated in IL-33 knockout mouse lungs, suggesting that IL-33 may regulate Glrx induction in vivo in response to allergen challenge. In summary, our data reveal a novel mechanism by which Glrx controls both LPS- and IL-33-mediated NF-κB activation leading to IL-33 production, and paracrine IL-33 can induce Glrx to further regulate inflammatory reactions.

DOI: 10.1371/journal.pone.0210827
PubMed: 30682073
PubMed Central: PMC6347181


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">IL-33 induction and signaling are controlled by glutaredoxin-1 in mouse macrophages.</title>
<author>
<name sortKey="Weinberg, Ellen O" sort="Weinberg, Ellen O" uniqKey="Weinberg E" first="Ellen O" last="Weinberg">Ellen O. Weinberg</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ferran, Beatriz" sort="Ferran, Beatriz" uniqKey="Ferran B" first="Beatriz" last="Ferran">Beatriz Ferran</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tsukahara, Yuko" sort="Tsukahara, Yuko" uniqKey="Tsukahara Y" first="Yuko" last="Tsukahara">Yuko Tsukahara</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hatch, Michaela M S" sort="Hatch, Michaela M S" uniqKey="Hatch M" first="Michaela M S" last="Hatch">Michaela M S. Hatch</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Han, Jingyan" sort="Han, Jingyan" uniqKey="Han J" first="Jingyan" last="Han">Jingyan Han</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Murdoch, Colin E" sort="Murdoch, Colin E" uniqKey="Murdoch C" first="Colin E" last="Murdoch">Colin E. Murdoch</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Matsui, Reiko" sort="Matsui, Reiko" uniqKey="Matsui R" first="Reiko" last="Matsui">Reiko Matsui</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30682073</idno>
<idno type="pmid">30682073</idno>
<idno type="doi">10.1371/journal.pone.0210827</idno>
<idno type="pmc">PMC6347181</idno>
<idno type="wicri:Area/Main/Corpus">000167</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000167</idno>
<idno type="wicri:Area/Main/Curation">000167</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000167</idno>
<idno type="wicri:Area/Main/Exploration">000167</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">IL-33 induction and signaling are controlled by glutaredoxin-1 in mouse macrophages.</title>
<author>
<name sortKey="Weinberg, Ellen O" sort="Weinberg, Ellen O" uniqKey="Weinberg E" first="Ellen O" last="Weinberg">Ellen O. Weinberg</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ferran, Beatriz" sort="Ferran, Beatriz" uniqKey="Ferran B" first="Beatriz" last="Ferran">Beatriz Ferran</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tsukahara, Yuko" sort="Tsukahara, Yuko" uniqKey="Tsukahara Y" first="Yuko" last="Tsukahara">Yuko Tsukahara</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hatch, Michaela M S" sort="Hatch, Michaela M S" uniqKey="Hatch M" first="Michaela M S" last="Hatch">Michaela M S. Hatch</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Han, Jingyan" sort="Han, Jingyan" uniqKey="Han J" first="Jingyan" last="Han">Jingyan Han</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Murdoch, Colin E" sort="Murdoch, Colin E" uniqKey="Murdoch C" first="Colin E" last="Murdoch">Colin E. Murdoch</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Matsui, Reiko" sort="Matsui, Reiko" uniqKey="Matsui R" first="Reiko" last="Matsui">Reiko Matsui</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Allergens (administration & dosage)</term>
<term>Animals (MeSH)</term>
<term>Asthma (etiology)</term>
<term>Asthma (immunology)</term>
<term>Asthma (metabolism)</term>
<term>Disease Models, Animal (MeSH)</term>
<term>Gene Expression (drug effects)</term>
<term>Gene Knockdown Techniques (MeSH)</term>
<term>Glutaredoxins (deficiency)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glutathione (metabolism)</term>
<term>Interleukin-33 (biosynthesis)</term>
<term>Interleukin-33 (genetics)</term>
<term>Lipopolysaccharides (pharmacology)</term>
<term>Lung (immunology)</term>
<term>Lung (metabolism)</term>
<term>Macrophages (drug effects)</term>
<term>Macrophages (immunology)</term>
<term>Macrophages (metabolism)</term>
<term>Mice (MeSH)</term>
<term>Mice, Knockout (MeSH)</term>
<term>NF-kappa B (metabolism)</term>
<term>RAW 264.7 Cells (MeSH)</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Messenger (metabolism)</term>
<term>RNA, Small Interfering (genetics)</term>
<term>Signal Transduction (MeSH)</term>
<term>TNF Receptor-Associated Factor 6 (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (génétique)</term>
<term>ARN messager (métabolisme)</term>
<term>Allergènes (administration et posologie)</term>
<term>Animaux (MeSH)</term>
<term>Asthme (immunologie)</term>
<term>Asthme (métabolisme)</term>
<term>Asthme (étiologie)</term>
<term>Cellules RAW 264.7 (MeSH)</term>
<term>Expression des gènes (effets des médicaments et des substances chimiques)</term>
<term>Facteur de transcription NF-kappa B (métabolisme)</term>
<term>Facteur-6 associé aux récepteurs de TNF (métabolisme)</term>
<term>Glutarédoxines (déficit)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Glutathion (métabolisme)</term>
<term>Interleukine-33 (biosynthèse)</term>
<term>Interleukine-33 (génétique)</term>
<term>Lipopolysaccharides (pharmacologie)</term>
<term>Macrophages (effets des médicaments et des substances chimiques)</term>
<term>Macrophages (immunologie)</term>
<term>Macrophages (métabolisme)</term>
<term>Modèles animaux de maladie humaine (MeSH)</term>
<term>Petit ARN interférent (génétique)</term>
<term>Poumon (immunologie)</term>
<term>Poumon (métabolisme)</term>
<term>Souris (MeSH)</term>
<term>Souris knockout (MeSH)</term>
<term>Techniques de knock-down de gènes (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="administration & dosage" xml:lang="en">
<term>Allergens</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Interleukin-33</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="administration et posologie" xml:lang="fr">
<term>Allergènes</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Interleukine-33</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression</term>
<term>Macrophages</term>
</keywords>
<keywords scheme="MESH" qualifier="déficit" xml:lang="fr">
<term>Glutarédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Expression des gènes</term>
<term>Macrophages</term>
</keywords>
<keywords scheme="MESH" qualifier="etiology" xml:lang="en">
<term>Asthma</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutaredoxins</term>
<term>Interleukin-33</term>
<term>RNA, Messenger</term>
<term>RNA, Small Interfering</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>Glutarédoxines</term>
<term>Interleukine-33</term>
<term>Petit ARN interférent</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Asthme</term>
<term>Macrophages</term>
<term>Poumon</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Asthma</term>
<term>Lung</term>
<term>Macrophages</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Asthma</term>
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Lung</term>
<term>Macrophages</term>
<term>NF-kappa B</term>
<term>RNA, Messenger</term>
<term>TNF Receptor-Associated Factor 6</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
<term>Asthme</term>
<term>Facteur de transcription NF-kappa B</term>
<term>Facteur-6 associé aux récepteurs de TNF</term>
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Macrophages</term>
<term>Poumon</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Lipopolysaccharides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Lipopolysaccharides</term>
</keywords>
<keywords scheme="MESH" qualifier="étiologie" xml:lang="fr">
<term>Asthme</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Disease Models, Animal</term>
<term>Gene Knockdown Techniques</term>
<term>Mice</term>
<term>Mice, Knockout</term>
<term>RAW 264.7 Cells</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cellules RAW 264.7</term>
<term>Modèles animaux de maladie humaine</term>
<term>Souris</term>
<term>Souris knockout</term>
<term>Techniques de knock-down de gènes</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Interleukin (IL)-33 is an interleukin-1 like cytokine that enhances Th2 responses and mediates mucosal immunity and allergic inflammation but the mechanism regulating endogenous IL-33 production are still under investigation. In macrophages, lipopolysaccharide (LPS) administration resulted in marked induction of IL-33 mRNA that was blunted in macrophages from glutaredoxin-1 (Glrx) knockout mice and in RAW264.7 macrophages with Glrx knockdown by siRNA. Glutaredoxin-1 is a small cytosolic thioltransferase that controls a reversible protein thiol modification, S-glutationylation (protein-GSH adducts), thereby regulating redox signaling. In this study, we examined the mechanism of Glrx regulation of endogenous IL-33 induction in macrophages. Glrx knockdown resulted in impaired de-glutathionylation of TRAF6, which is required for TRAF6 activation, and inhibited downstream IKKβ and NF-κB activation. Inhibitors of NF-κB suppressed IL-33 induction and chromatin IP sequencing data analysis confirmed that IL-33 is an NF-κB-responsive gene. Since TRAF6-NF-κB activation is also essential for IL-33 signaling through its receptor, ST2L, we next tested the involvement of Glrx in exogenous IL-33 responses in RAW264.7 cells. Recombinant IL-33 (rIL-33) administration induced IL-33 mRNA expression in RAW264.7 macrophages, and this was inhibited by Glrx knockdown. Interestingly, rIL-33-induced IL-33 protein was identified as the 20 kDa cleaved form whereas LPS-induced IL-33 protein was identified as full-length IL-33, which may be less active than the cleaved form. In a clinically-relevant mouse model of asthma, intra-tracheal cockroach antigen treatment induced Glrx protein in wild type mouse lungs but Glrx induction was attenuated in IL-33 knockout mouse lungs, suggesting that IL-33 may regulate Glrx induction in vivo in response to allergen challenge. In summary, our data reveal a novel mechanism by which Glrx controls both LPS- and IL-33-mediated NF-κB activation leading to IL-33 production, and paracrine IL-33 can induce Glrx to further regulate inflammatory reactions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30682073</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>10</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>IL-33 induction and signaling are controlled by glutaredoxin-1 in mouse macrophages.</ArticleTitle>
<Pagination>
<MedlinePgn>e0210827</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0210827</ELocationID>
<Abstract>
<AbstractText>Interleukin (IL)-33 is an interleukin-1 like cytokine that enhances Th2 responses and mediates mucosal immunity and allergic inflammation but the mechanism regulating endogenous IL-33 production are still under investigation. In macrophages, lipopolysaccharide (LPS) administration resulted in marked induction of IL-33 mRNA that was blunted in macrophages from glutaredoxin-1 (Glrx) knockout mice and in RAW264.7 macrophages with Glrx knockdown by siRNA. Glutaredoxin-1 is a small cytosolic thioltransferase that controls a reversible protein thiol modification, S-glutationylation (protein-GSH adducts), thereby regulating redox signaling. In this study, we examined the mechanism of Glrx regulation of endogenous IL-33 induction in macrophages. Glrx knockdown resulted in impaired de-glutathionylation of TRAF6, which is required for TRAF6 activation, and inhibited downstream IKKβ and NF-κB activation. Inhibitors of NF-κB suppressed IL-33 induction and chromatin IP sequencing data analysis confirmed that IL-33 is an NF-κB-responsive gene. Since TRAF6-NF-κB activation is also essential for IL-33 signaling through its receptor, ST2L, we next tested the involvement of Glrx in exogenous IL-33 responses in RAW264.7 cells. Recombinant IL-33 (rIL-33) administration induced IL-33 mRNA expression in RAW264.7 macrophages, and this was inhibited by Glrx knockdown. Interestingly, rIL-33-induced IL-33 protein was identified as the 20 kDa cleaved form whereas LPS-induced IL-33 protein was identified as full-length IL-33, which may be less active than the cleaved form. In a clinically-relevant mouse model of asthma, intra-tracheal cockroach antigen treatment induced Glrx protein in wild type mouse lungs but Glrx induction was attenuated in IL-33 knockout mouse lungs, suggesting that IL-33 may regulate Glrx induction in vivo in response to allergen challenge. In summary, our data reveal a novel mechanism by which Glrx controls both LPS- and IL-33-mediated NF-κB activation leading to IL-33 production, and paracrine IL-33 can induce Glrx to further regulate inflammatory reactions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Weinberg</LastName>
<ForeName>Ellen O</ForeName>
<Initials>EO</Initials>
<AffiliationInfo>
<Affiliation>Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ferran</LastName>
<ForeName>Beatriz</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tsukahara</LastName>
<ForeName>Yuko</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hatch</LastName>
<ForeName>Michaela M S</ForeName>
<Initials>MMS</Initials>
<AffiliationInfo>
<Affiliation>Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Han</LastName>
<ForeName>Jingyan</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Murdoch</LastName>
<ForeName>Colin E</ForeName>
<Initials>CE</Initials>
<AffiliationInfo>
<Affiliation>Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Matsui</LastName>
<ForeName>Reiko</ForeName>
<Initials>R</Initials>
<Identifier Source="ORCID">0000-0002-8132-2823</Identifier>
<AffiliationInfo>
<Affiliation>Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R21 NS108724</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 HL007224</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL133013</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R03 AI090404</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R03 AG051857</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>01</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000485">Allergens</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C516006">Glrx protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C506535">Il33 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000067596">Interleukin-33</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008070">Lipopolysaccharides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016328">NF-kappa B</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D034741">RNA, Small Interfering</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D048029">TNF Receptor-Associated Factor 6</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C000631106">TRAF6 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C060835">allergen CRa, cockroach</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000485" MajorTopicYN="N">Allergens</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001249" MajorTopicYN="N">Asthma</DescriptorName>
<QualifierName UI="Q000209" MajorTopicYN="N">etiology</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004195" MajorTopicYN="N">Disease Models, Animal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055785" MajorTopicYN="N">Gene Knockdown Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000067596" MajorTopicYN="N">Interleukin-33</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008070" MajorTopicYN="N">Lipopolysaccharides</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008168" MajorTopicYN="N">Lung</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008264" MajorTopicYN="N">Macrophages</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018345" MajorTopicYN="N">Mice, Knockout</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016328" MajorTopicYN="N">NF-kappa B</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000067996" MajorTopicYN="N">RAW 264.7 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034741" MajorTopicYN="N">RNA, Small Interfering</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048029" MajorTopicYN="N">TNF Receptor-Associated Factor 6</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>08</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>01</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>1</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>1</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>10</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30682073</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0210827</ArticleId>
<ArticleId IdType="pii">PONE-D-18-25658</ArticleId>
<ArticleId IdType="pmc">PMC6347181</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 2009 Nov 15;183(10):6469-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19841166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2007 Nov 1;43(9):1299-312</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17893043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2007 Feb;36(2):147-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16980552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 2008 Oct;173(4):1229-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18787100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18581-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20937871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Pharmacol. 2018 Jan 5;818:235-240</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29107673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Apr 11;6(4):e18404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21494550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Immunol. 2001 Oct;31(10):2979-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11592074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2016 Sep;55(3):377-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27035878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2009 Dec 15;183(12):7890-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19933859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2013 May 1;190(9):4489-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23547117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2011 Apr 1;186(7):4375-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21357533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2008 May 31;25(3):332-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18483468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2004 Sep 1;173(5):2913-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15322147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Immunol. 2008 Nov;Chapter 14:Unit 14.1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19016445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Jun 16;11(6):e0157571</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27310495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2011 Sep 15;51(6):1249-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21762778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2011 Nov;45(5):931-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21454804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2010 Dec 15;24(24):2760-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21106671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Respir Res. 2018 Mar 27;19(1):52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29587772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2011 Aug 15;187(4):1609-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21734074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Mar 21;289(12):8633-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24482236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jul 17;284(29):19420-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19465481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2011 Apr;44(4):491-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20539014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2014 Dec;42(6):1665-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25399587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2001 Nov 27;40(47):14134-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11714266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5103-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12697895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Signal. 2008 Sep;20(9):1679-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18603409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Invest Ophthalmol Vis Sci. 2010 Mar;51(3):1524-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19892870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008 Oct 06;3(10):e3331</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18836528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2017;1559:121-136</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28063042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1673-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22307629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jan 2;104(1):282-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17185418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Oct 03;6:34255</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27694941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):15502-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25313073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunology. 2010 Jun;130(2):172-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20070408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Jun 26;7(1):4219</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28652606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Feb 24;335(6071):984-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22323740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):13086-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16916935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2000 Sep 12;39(36):11121-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10998251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Immunol. 2017 Oct;90:42-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28697404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2009 Oct 1;114(14):3117-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19661270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1997 Sep 15;197(1-2):189-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9332366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2010 Dec 17;403(3-4):335-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21078302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Allergy Asthma Immunol Res. 2011 Apr;3(2):81-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21461246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Jun 2;106(22):9021-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19439663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2005 Nov;23(5):479-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16286016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Sep 14;6:8327</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26365875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2013 May;123(5):2287-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23585480</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Weinberg, Ellen O" sort="Weinberg, Ellen O" uniqKey="Weinberg E" first="Ellen O" last="Weinberg">Ellen O. Weinberg</name>
</region>
<name sortKey="Ferran, Beatriz" sort="Ferran, Beatriz" uniqKey="Ferran B" first="Beatriz" last="Ferran">Beatriz Ferran</name>
<name sortKey="Han, Jingyan" sort="Han, Jingyan" uniqKey="Han J" first="Jingyan" last="Han">Jingyan Han</name>
<name sortKey="Hatch, Michaela M S" sort="Hatch, Michaela M S" uniqKey="Hatch M" first="Michaela M S" last="Hatch">Michaela M S. Hatch</name>
<name sortKey="Matsui, Reiko" sort="Matsui, Reiko" uniqKey="Matsui R" first="Reiko" last="Matsui">Reiko Matsui</name>
<name sortKey="Murdoch, Colin E" sort="Murdoch, Colin E" uniqKey="Murdoch C" first="Colin E" last="Murdoch">Colin E. Murdoch</name>
<name sortKey="Tsukahara, Yuko" sort="Tsukahara, Yuko" uniqKey="Tsukahara Y" first="Yuko" last="Tsukahara">Yuko Tsukahara</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000156 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000156 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30682073
   |texte=   IL-33 induction and signaling are controlled by glutaredoxin-1 in mouse macrophages.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30682073" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020